This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *4.54 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.54 | ⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) ↔ ¬ ( 𝜑 ∨ ¬ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-an | ⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) ↔ ¬ ( ¬ 𝜑 → ¬ 𝜓 ) ) | |
| 2 | pm4.66 | ⊢ ( ( ¬ 𝜑 → ¬ 𝜓 ) ↔ ( 𝜑 ∨ ¬ 𝜓 ) ) | |
| 3 | 1 2 | xchbinx | ⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) ↔ ¬ ( 𝜑 ∨ ¬ 𝜓 ) ) |