This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *2.62 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 13-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm2.62 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.621 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) ) | |
| 2 | 1 | com12 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) |