This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction eliminating an elementhood in an antecedent. (Contributed by AV, 5-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pm2.61danel.1 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → 𝜓 ) | |
| pm2.61danel.2 | ⊢ ( ( 𝜑 ∧ 𝐴 ∉ 𝐵 ) → 𝜓 ) | ||
| Assertion | pm2.61danel | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61danel.1 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → 𝜓 ) | |
| 2 | pm2.61danel.2 | ⊢ ( ( 𝜑 ∧ 𝐴 ∉ 𝐵 ) → 𝜓 ) | |
| 3 | df-nel | ⊢ ( 𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵 ) | |
| 4 | 3 2 | sylan2br | ⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ 𝐵 ) → 𝜓 ) |
| 5 | 1 4 | pm2.61dan | ⊢ ( 𝜑 → 𝜓 ) |