This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *2.41 of WhiteheadRussell p. 106. (Contributed by NM, 3-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm2.41 | ⊢ ( ( 𝜓 ∨ ( 𝜑 ∨ 𝜓 ) ) → ( 𝜑 ∨ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc | ⊢ ( 𝜓 → ( 𝜑 ∨ 𝜓 ) ) | |
| 2 | id | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜓 ) ) | |
| 3 | 1 2 | jaoi | ⊢ ( ( 𝜓 ∨ ( 𝜑 ∨ 𝜓 ) ) → ( 𝜑 ∨ 𝜓 ) ) |