This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *2.36 of WhiteheadRussell p. 105. (Contributed by NM, 6-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm2.36 | ⊢ ( ( 𝜓 → 𝜒 ) → ( ( 𝜑 ∨ 𝜓 ) → ( 𝜒 ∨ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.4 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜓 ∨ 𝜑 ) ) | |
| 2 | pm2.38 | ⊢ ( ( 𝜓 → 𝜒 ) → ( ( 𝜓 ∨ 𝜑 ) → ( 𝜒 ∨ 𝜑 ) ) ) | |
| 3 | 1 2 | syl5 | ⊢ ( ( 𝜓 → 𝜒 ) → ( ( 𝜑 ∨ 𝜓 ) → ( 𝜒 ∨ 𝜑 ) ) ) |