This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *2.31 of WhiteheadRussell p. 104. (Contributed by NM, 3-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm2.31 | ⊢ ( ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) → ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orass | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) | |
| 2 | 1 | biimpri | ⊢ ( ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) → ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) |