This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *2.26 of WhiteheadRussell p. 104. See pm2.27 . (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 23-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm2.26 | ⊢ ( ¬ 𝜑 ∨ ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 | ⊢ ( 𝜑 → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) | |
| 2 | 1 | imori | ⊢ ( ¬ 𝜑 ∨ ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) |