This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *13.194 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm13.194 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm13.13a | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 2 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 3 | 1 2 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → [ 𝑦 / 𝑥 ] 𝜑 ) |
| 4 | simpl | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝜑 ) | |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) | |
| 6 | 3 4 5 | 3jca | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦 ) ) |
| 7 | 3simpc | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜑 ∧ 𝑥 = 𝑦 ) ) | |
| 8 | 6 7 | impbii | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ 𝜑 ∧ 𝑥 = 𝑦 ) ) |