This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabex.1 | ⊢ 𝐴 ∈ V | |
| opabex.2 | ⊢ ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝜑 ) | ||
| Assertion | opabex | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabex.1 | ⊢ 𝐴 ∈ V | |
| 2 | opabex.2 | ⊢ ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝜑 ) | |
| 3 | funopab | ⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 4 | moanimv | ⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝜑 ) ) | |
| 5 | 2 4 | mpbir | ⊢ ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
| 6 | 3 5 | mpgbir | ⊢ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
| 7 | dmopabss | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ 𝐴 | |
| 8 | 1 7 | ssexi | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∈ V |
| 9 | funex | ⊢ ( ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∧ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∈ V ) | |
| 10 | 6 8 9 | mp2an | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∈ V |