This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numsucc.1 | ⊢ 𝑌 ∈ ℕ0 | |
| numsucc.2 | ⊢ 𝑇 = ( 𝑌 + 1 ) | ||
| numsucc.3 | ⊢ 𝐴 ∈ ℕ0 | ||
| numsucc.4 | ⊢ ( 𝐴 + 1 ) = 𝐵 | ||
| numsucc.5 | ⊢ 𝑁 = ( ( 𝑇 · 𝐴 ) + 𝑌 ) | ||
| Assertion | numsucc | ⊢ ( 𝑁 + 1 ) = ( ( 𝑇 · 𝐵 ) + 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numsucc.1 | ⊢ 𝑌 ∈ ℕ0 | |
| 2 | numsucc.2 | ⊢ 𝑇 = ( 𝑌 + 1 ) | |
| 3 | numsucc.3 | ⊢ 𝐴 ∈ ℕ0 | |
| 4 | numsucc.4 | ⊢ ( 𝐴 + 1 ) = 𝐵 | |
| 5 | numsucc.5 | ⊢ 𝑁 = ( ( 𝑇 · 𝐴 ) + 𝑌 ) | |
| 6 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 7 | 1 6 | nn0addcli | ⊢ ( 𝑌 + 1 ) ∈ ℕ0 |
| 8 | 2 7 | eqeltri | ⊢ 𝑇 ∈ ℕ0 |
| 9 | 8 | nn0cni | ⊢ 𝑇 ∈ ℂ |
| 10 | 9 | mulridi | ⊢ ( 𝑇 · 1 ) = 𝑇 |
| 11 | 10 | oveq2i | ⊢ ( ( 𝑇 · 𝐴 ) + ( 𝑇 · 1 ) ) = ( ( 𝑇 · 𝐴 ) + 𝑇 ) |
| 12 | 3 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 13 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 14 | 9 12 13 | adddii | ⊢ ( 𝑇 · ( 𝐴 + 1 ) ) = ( ( 𝑇 · 𝐴 ) + ( 𝑇 · 1 ) ) |
| 15 | 2 | eqcomi | ⊢ ( 𝑌 + 1 ) = 𝑇 |
| 16 | 8 3 1 15 5 | numsuc | ⊢ ( 𝑁 + 1 ) = ( ( 𝑇 · 𝐴 ) + 𝑇 ) |
| 17 | 11 14 16 | 3eqtr4ri | ⊢ ( 𝑁 + 1 ) = ( 𝑇 · ( 𝐴 + 1 ) ) |
| 18 | 4 | oveq2i | ⊢ ( 𝑇 · ( 𝐴 + 1 ) ) = ( 𝑇 · 𝐵 ) |
| 19 | 3 6 | nn0addcli | ⊢ ( 𝐴 + 1 ) ∈ ℕ0 |
| 20 | 4 19 | eqeltrri | ⊢ 𝐵 ∈ ℕ0 |
| 21 | 8 20 | num0u | ⊢ ( 𝑇 · 𝐵 ) = ( ( 𝑇 · 𝐵 ) + 0 ) |
| 22 | 17 18 21 | 3eqtri | ⊢ ( 𝑁 + 1 ) = ( ( 𝑇 · 𝐵 ) + 0 ) |