This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmlnop0 | ⊢ ( 𝑇 ∈ LinOp → ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) → ( ( normop ‘ 𝑇 ) = 0 ↔ ( normop ‘ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ) = 0 ) ) | |
| 2 | eqeq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) → ( 𝑇 = 0hop ↔ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = 0hop ) ) | |
| 3 | 1 2 | bibi12d | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) → ( ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) ↔ ( ( normop ‘ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ) = 0 ↔ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = 0hop ) ) ) |
| 4 | 0lnop | ⊢ 0hop ∈ LinOp | |
| 5 | 4 | elimel | ⊢ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ∈ LinOp |
| 6 | 5 | nmlnop0iHIL | ⊢ ( ( normop ‘ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) ) = 0 ↔ if ( 𝑇 ∈ LinOp , 𝑇 , 0hop ) = 0hop ) |
| 7 | 3 6 | dedth | ⊢ ( 𝑇 ∈ LinOp → ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) ) |