This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If x is not free in ph , then it is not free in F/ y ph . (Contributed by Mario Carneiro, 11-Aug-2016) (Proof shortened by Wolf Lammen, 30-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfnf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| Assertion | nfnf | ⊢ Ⅎ 𝑥 Ⅎ 𝑦 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | df-nf | ⊢ ( Ⅎ 𝑦 𝜑 ↔ ( ∃ 𝑦 𝜑 → ∀ 𝑦 𝜑 ) ) | |
| 3 | 1 | nfex | ⊢ Ⅎ 𝑥 ∃ 𝑦 𝜑 |
| 4 | 1 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑦 𝜑 |
| 5 | 3 4 | nfim | ⊢ Ⅎ 𝑥 ( ∃ 𝑦 𝜑 → ∀ 𝑦 𝜑 ) |
| 6 | 2 5 | nfxfr | ⊢ Ⅎ 𝑥 Ⅎ 𝑦 𝜑 |