This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative of a real is real. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| negrebd.2 | ⊢ ( 𝜑 → - 𝐴 ∈ ℝ ) | ||
| Assertion | negrebd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | negrebd.2 | ⊢ ( 𝜑 → - 𝐴 ∈ ℝ ) | |
| 3 | negreb | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
| 5 | 2 4 | mpbid | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |