This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two complex numbers are unequal, so are their negatives. Contrapositive of neg11d . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| negned.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| negned.3 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
| Assertion | negned | ⊢ ( 𝜑 → - 𝐴 ≠ - 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | negned.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | negned.3 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 4 | 1 2 | neg11ad | ⊢ ( 𝜑 → ( - 𝐴 = - 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 5 | 4 | necon3bid | ⊢ ( 𝜑 → ( - 𝐴 ≠ - 𝐵 ↔ 𝐴 ≠ 𝐵 ) ) |
| 6 | 3 5 | mpbird | ⊢ ( 𝜑 → - 𝐴 ≠ - 𝐵 ) |