This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for unary minus. Deduction form of negcon1 . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| negcon1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | negcon1d | ⊢ ( 𝜑 → ( - 𝐴 = 𝐵 ↔ - 𝐵 = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | negcon1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | negcon1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 = 𝐵 ↔ - 𝐵 = 𝐴 ) ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( - 𝐴 = 𝐵 ↔ - 𝐵 = 𝐴 ) ) |