This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contrapositive law deduction for inequality. (Contributed by NM, 9-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | necon4bbid.1 | ⊢ ( 𝜑 → ( ¬ 𝜓 ↔ 𝐴 ≠ 𝐵 ) ) | |
| Assertion | necon4bbid | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon4bbid.1 | ⊢ ( 𝜑 → ( ¬ 𝜓 ↔ 𝐴 ≠ 𝐵 ) ) | |
| 2 | 1 | bicomd | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ↔ ¬ 𝜓 ) ) |
| 3 | 2 | necon4abid | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ 𝜓 ) ) |
| 4 | 3 | bicomd | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝐴 = 𝐵 ) ) |