This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express "exclusive or". (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 24-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nbi2 | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xor3 | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) ) | |
| 2 | pm5.17 | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) ) | |
| 3 | 1 2 | bitr4i | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ) |