This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nanbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | nanbi1d | ⊢ ( 𝜑 → ( ( 𝜓 ⊼ 𝜃 ) ↔ ( 𝜒 ⊼ 𝜃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nanbid.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | nanbi1 | ⊢ ( ( 𝜓 ↔ 𝜒 ) → ( ( 𝜓 ⊼ 𝜃 ) ↔ ( 𝜒 ⊼ 𝜃 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → ( ( 𝜓 ⊼ 𝜃 ) ↔ ( 𝜒 ⊼ 𝜃 ) ) ) |