This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move the left term in a sum on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvlraddd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| mvlraddd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| mvlraddd.3 | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = 𝐶 ) | ||
| Assertion | mvlladdd | ⊢ ( 𝜑 → 𝐵 = ( 𝐶 − 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvlraddd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | mvlraddd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | mvlraddd.3 | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = 𝐶 ) | |
| 4 | 2 1 | pncand | ⊢ ( 𝜑 → ( ( 𝐵 + 𝐴 ) − 𝐴 ) = 𝐵 ) |
| 5 | 1 2 | addcomd | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = ( 𝐵 + 𝐴 ) ) |
| 6 | 5 3 | eqtr3d | ⊢ ( 𝜑 → ( 𝐵 + 𝐴 ) = 𝐶 ) |
| 7 | 6 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐵 + 𝐴 ) − 𝐴 ) = ( 𝐶 − 𝐴 ) ) |
| 8 | 4 7 | eqtr3d | ⊢ ( 𝜑 → 𝐵 = ( 𝐶 − 𝐴 ) ) |