This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition operation of the field of complex numbers. Version of cnfldadd using maps-to notation, which does not require ax-addf . (Contributed by GG, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpocnfldadd | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) = ( +g ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoaddex | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) ∈ V | |
| 2 | cnfldstr | ⊢ ℂfld Struct 〈 1 , ; 1 3 〉 | |
| 3 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
| 4 | snsstp2 | ⊢ { 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 } ⊆ { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } | |
| 5 | ssun1 | ⊢ { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) | |
| 6 | ssun1 | ⊢ ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ⊆ ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) | |
| 7 | df-cnfld | ⊢ ℂfld = ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) | |
| 8 | 6 7 | sseqtrri | ⊢ ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ⊆ ℂfld |
| 9 | 5 8 | sstri | ⊢ { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 〉 } ⊆ ℂfld |
| 10 | 4 9 | sstri | ⊢ { 〈 ( +g ‘ ndx ) , ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) 〉 } ⊆ ℂfld |
| 11 | 2 3 10 | strfv | ⊢ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) ∈ V → ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) = ( +g ‘ ℂfld ) ) |
| 12 | 1 11 | ax-mp | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) = ( +g ‘ ℂfld ) |