This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is an open set of a metric space. Part of Theorem T1 of Kreyszig p. 19. (Contributed by NM, 4-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | mopn0 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∅ ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 3 | 0opn | ⊢ ( 𝐽 ∈ Top → ∅ ∈ 𝐽 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∅ ∈ 𝐽 ) |