This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The fractional part of a number is the number modulo 1. (Contributed by NM, 11-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modfrac | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 mod 1 ) = ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 2 | modval | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ+ ) → ( 𝐴 mod 1 ) = ( 𝐴 − ( 1 · ( ⌊ ‘ ( 𝐴 / 1 ) ) ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 mod 1 ) = ( 𝐴 − ( 1 · ( ⌊ ‘ ( 𝐴 / 1 ) ) ) ) ) |
| 4 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 5 | 4 | div1d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 / 1 ) = 𝐴 ) |
| 6 | 5 | fveq2d | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 / 1 ) ) = ( ⌊ ‘ 𝐴 ) ) |
| 7 | 6 | oveq2d | ⊢ ( 𝐴 ∈ ℝ → ( 1 · ( ⌊ ‘ ( 𝐴 / 1 ) ) ) = ( 1 · ( ⌊ ‘ 𝐴 ) ) ) |
| 8 | reflcl | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) | |
| 9 | 8 | recnd | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℂ ) |
| 10 | 9 | mullidd | ⊢ ( 𝐴 ∈ ℝ → ( 1 · ( ⌊ ‘ 𝐴 ) ) = ( ⌊ ‘ 𝐴 ) ) |
| 11 | 7 10 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( 1 · ( ⌊ ‘ ( 𝐴 / 1 ) ) ) = ( ⌊ ‘ 𝐴 ) ) |
| 12 | 11 | oveq2d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − ( 1 · ( ⌊ ‘ ( 𝐴 / 1 ) ) ) ) = ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) ) |
| 13 | 3 12 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 mod 1 ) = ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) ) |