This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mercolem3 | ⊢ ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merco2 | ⊢ ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) | |
| 2 | merco2 | ⊢ ( ( ( 𝜒 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜓 ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) | |
| 3 | mercolem2 | ⊢ ( ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) → 𝜓 ) → ( ( ⊥ → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜓 ) ) ) | |
| 4 | merco2 | ⊢ ( ( ( ( 𝜓 → ( 𝜑 → 𝜒 ) ) → 𝜓 ) → ( ( ⊥ → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜓 ) ) ) → ( ( ( ( ⊥ → 𝜑 ) → 𝜓 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ( ( ( ⊥ → 𝜑 ) → 𝜓 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) ) |
| 6 | merco2 | ⊢ ( ( ( ( ( ⊥ → 𝜑 ) → 𝜓 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) ) → ( ( ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) → ( ( ⊥ → 𝜑 ) → 𝜓 ) ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜒 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜓 ) ) ) ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ( ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) → ( ( ⊥ → 𝜑 ) → 𝜓 ) ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜒 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜓 ) ) ) ) |
| 8 | merco2 | ⊢ ( ( ( ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) → ( ( ⊥ → 𝜑 ) → 𝜓 ) ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜒 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜓 ) ) ) ) → ( ( ( ( 𝜒 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜓 ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) ) ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( ( ( ( 𝜒 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜓 ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) ) ) |
| 10 | 2 9 | ax-mp | ⊢ ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) ) |
| 11 | 1 10 | ax-mp | ⊢ ( ( ( ( 𝜑 → 𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → ( 𝜑 → 𝜑 ) ) ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) ) |
| 12 | 1 11 | ax-mp | ⊢ ( ( 𝜓 → 𝜒 ) → ( 𝜓 → ( 𝜑 → 𝜒 ) ) ) |