This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | luklem4 | ⊢ ( ( ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | luk-2 | ⊢ ( ( ¬ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) | |
| 2 | luk-2 | ⊢ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) | |
| 3 | luklem3 | ⊢ ( ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → ( ( ( ¬ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) → ( ¬ 𝜓 → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ( ( ¬ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) → ( ¬ 𝜓 → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) ) |
| 5 | 1 4 | ax-mp | ⊢ ( ¬ 𝜓 → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) |
| 6 | luk-1 | ⊢ ( ( ¬ 𝜓 → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) → ( ( ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → 𝜓 ) → ( ¬ 𝜓 → 𝜓 ) ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ( ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → 𝜓 ) → ( ¬ 𝜓 → 𝜓 ) ) |
| 8 | luk-2 | ⊢ ( ( ¬ 𝜓 → 𝜓 ) → 𝜓 ) | |
| 9 | 7 8 | luklem1 | ⊢ ( ( ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) |