This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction/product property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnopl.1 | ⊢ 𝑇 ∈ LinOp | |
| Assertion | lnopsubmuli | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐵 −ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) = ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopl.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 3 | 1 | lnopsubi | ⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) → ( 𝑇 ‘ ( 𝐵 −ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) = ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐵 ∈ ℋ ∧ ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) ) → ( 𝑇 ‘ ( 𝐵 −ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) = ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
| 5 | 4 | 3impb | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐵 −ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) = ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
| 6 | 5 | 3com12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐵 −ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) = ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
| 7 | 1 | lnopmuli | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐶 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐶 ) ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐶 ) ) ) = ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐶 ) ) ) ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐶 ) ) ) = ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐶 ) ) ) ) |
| 10 | 6 9 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐵 −ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) = ( ( 𝑇 ‘ 𝐵 ) −ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝐶 ) ) ) ) |