This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a bijective module homomorphism is a bijective module homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmimcnv | ⊢ ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) → ◡ 𝐹 ∈ ( 𝑇 LMIso 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 3 | 1 2 | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 4 | frel | ⊢ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) → Rel 𝐹 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → Rel 𝐹 ) |
| 6 | dfrel2 | ⊢ ( Rel 𝐹 ↔ ◡ ◡ 𝐹 = 𝐹 ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ◡ ◡ 𝐹 = 𝐹 ) |
| 8 | id | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | |
| 9 | 7 8 | eqeltrd | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ◡ ◡ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 10 | 9 | anim1ci | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 LMHom 𝑆 ) ) → ( ◡ 𝐹 ∈ ( 𝑇 LMHom 𝑆 ) ∧ ◡ ◡ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) ) |
| 11 | islmim2 | ⊢ ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) ↔ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 LMHom 𝑆 ) ) ) | |
| 12 | islmim2 | ⊢ ( ◡ 𝐹 ∈ ( 𝑇 LMIso 𝑆 ) ↔ ( ◡ 𝐹 ∈ ( 𝑇 LMHom 𝑆 ) ∧ ◡ ◡ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) ) | |
| 13 | 10 11 12 | 3imtr4i | ⊢ ( 𝐹 ∈ ( 𝑆 LMIso 𝑇 ) → ◡ 𝐹 ∈ ( 𝑇 LMIso 𝑆 ) ) |