This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ortholattice is distributive in one ordering direction (join version). (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ledi.1 | ⊢ 𝐴 ∈ Cℋ | |
| ledi.2 | ⊢ 𝐵 ∈ Cℋ | ||
| ledi.3 | ⊢ 𝐶 ∈ Cℋ | ||
| Assertion | lejdii | ⊢ ( 𝐴 ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ⊆ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ledi.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | ledi.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | ledi.3 | ⊢ 𝐶 ∈ Cℋ | |
| 4 | 1 2 | chub1i | ⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 5 | 1 3 | chub1i | ⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐶 ) |
| 6 | 4 5 | ssini | ⊢ 𝐴 ⊆ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐶 ) ) |
| 7 | inss1 | ⊢ ( 𝐵 ∩ 𝐶 ) ⊆ 𝐵 | |
| 8 | 2 1 | chub2i | ⊢ 𝐵 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 9 | 7 8 | sstri | ⊢ ( 𝐵 ∩ 𝐶 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 10 | inss2 | ⊢ ( 𝐵 ∩ 𝐶 ) ⊆ 𝐶 | |
| 11 | 3 1 | chub2i | ⊢ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐶 ) |
| 12 | 10 11 | sstri | ⊢ ( 𝐵 ∩ 𝐶 ) ⊆ ( 𝐴 ∨ℋ 𝐶 ) |
| 13 | 9 12 | ssini | ⊢ ( 𝐵 ∩ 𝐶 ) ⊆ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐶 ) ) |
| 14 | 2 3 | chincli | ⊢ ( 𝐵 ∩ 𝐶 ) ∈ Cℋ |
| 15 | 1 2 | chjcli | ⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
| 16 | 1 3 | chjcli | ⊢ ( 𝐴 ∨ℋ 𝐶 ) ∈ Cℋ |
| 17 | 15 16 | chincli | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐶 ) ) ∈ Cℋ |
| 18 | 1 14 17 | chlubi | ⊢ ( ( 𝐴 ⊆ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐶 ) ) ∧ ( 𝐵 ∩ 𝐶 ) ⊆ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐶 ) ) ) ↔ ( 𝐴 ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ⊆ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐶 ) ) ) |
| 19 | 18 | bicomi | ⊢ ( ( 𝐴 ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ⊆ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐶 ) ) ↔ ( 𝐴 ⊆ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐶 ) ) ∧ ( 𝐵 ∩ 𝐶 ) ⊆ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐶 ) ) ) ) |
| 20 | 6 13 19 | mpbir2an | ⊢ ( 𝐴 ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ⊆ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ 𝐶 ) ) |