This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlej.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | latnlej2l | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) → ¬ 𝑋 ≤ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | 1 2 3 | latnlej2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) → ( ¬ 𝑋 ≤ 𝑌 ∧ ¬ 𝑋 ≤ 𝑍 ) ) |
| 5 | 4 | simpld | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ¬ 𝑋 ≤ ( 𝑌 ∨ 𝑍 ) ) → ¬ 𝑋 ≤ 𝑌 ) |