This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for elisset and isset . (Contributed by NM, 26-May-1993) Extract from the proof of isset . (Revised by WL, 2-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issetlem.1 | ⊢ 𝑥 ∈ 𝑉 | |
| Assertion | issetlem | ⊢ ( 𝐴 ∈ 𝑉 ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issetlem.1 | ⊢ 𝑥 ∈ 𝑉 | |
| 2 | dfclel | ⊢ ( 𝐴 ∈ 𝑉 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝑉 ) ) | |
| 3 | 1 | biantru | ⊢ ( 𝑥 = 𝐴 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝑉 ) ) |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝑥 ∈ 𝑉 ) ) |
| 5 | 2 4 | bitr4i | ⊢ ( 𝐴 ∈ 𝑉 ↔ ∃ 𝑥 𝑥 = 𝐴 ) |