This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an atom". ( elatcv0 analog.) (Contributed by NM, 18-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isatom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isatom.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| isatom.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| isatom.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | isat2 | ⊢ ( ( 𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑃 ∈ 𝐴 ↔ 0 𝐶 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isatom.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isatom.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 3 | isatom.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 4 | isatom.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | 1 2 3 4 | isat | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ 𝐵 ∧ 0 𝐶 𝑃 ) ) ) |
| 6 | 5 | baibd | ⊢ ( ( 𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑃 ∈ 𝐴 ↔ 0 𝐶 𝑃 ) ) |