This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication form of imbi12i . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi12 is imbi12VD without virtual deductions and was automatically derived from imbi12VD .
| 1:: | |- (. ( ph <-> ps ) ->. ( ph <-> ps ) ). |
| 2:: | |- (. ( ph <-> ps ) ,. ( ch <-> th ) ->. ( ch <-> th ) ). |
| 3:: | |- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ph -> ch ) ->. ( ph -> ch ) ). |
| 4:1,3: | |- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ph -> ch ) ->. ( ps -> ch ) ). |
| 5:2,4: | |- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ph -> ch ) ->. ( ps -> th ) ). |
| 6:5: | |- (. ( ph <-> ps ) ,. ( ch <-> th ) ->. ( ( ph -> ch ) -> ( ps -> th ) ) ). |
| 7:: | |- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ps -> th ) ->. ( ps -> th ) ). |
| 8:1,7: | |- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ps -> th ) ->. ( ph -> th ) ). |
| 9:2,8: | |- (. ( ph <-> ps ) ,. ( ch <-> th ) ,. ( ps -> th ) ->. ( ph -> ch ) ). |
| 10:9: | |- (. ( ph <-> ps ) ,. ( ch <-> th ) ->. ( ( ps -> th ) -> ( ph -> ch ) ) ). |
| 11:6,10: | |- (. ( ph <-> ps ) ,. ( ch <-> th ) ->. ( ( ph -> ch ) <-> ( ps -> th ) ) ). |
| 12:11: | |- (. ( ph <-> ps ) ->. ( ( ch <-> th ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) ). |
| qed:12: | |- ( ( ph <-> ps ) -> ( ( ch <-> th ) -> ( ( ph -> ch ) <-> ( ps -> th ) ) ) ) |
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imbi12VD | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜒 ↔ 𝜃 ) → ( ( 𝜑 → 𝜒 ) ↔ ( 𝜓 → 𝜃 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ↔ 𝜃 ) ▶ ( 𝜒 ↔ 𝜃 ) ) | |
| 2 | idn1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ▶ ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | idn3 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ↔ 𝜃 ) , ( 𝜑 → 𝜒 ) ▶ ( 𝜑 → 𝜒 ) ) | |
| 4 | biimpr | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) | |
| 5 | 4 | imim1d | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜑 → 𝜒 ) → ( 𝜓 → 𝜒 ) ) ) |
| 6 | 2 3 5 | e13 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ↔ 𝜃 ) , ( 𝜑 → 𝜒 ) ▶ ( 𝜓 → 𝜒 ) ) |
| 7 | biimp | ⊢ ( ( 𝜒 ↔ 𝜃 ) → ( 𝜒 → 𝜃 ) ) | |
| 8 | 7 | imim2d | ⊢ ( ( 𝜒 ↔ 𝜃 ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → 𝜃 ) ) ) |
| 9 | 1 6 8 | e23 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ↔ 𝜃 ) , ( 𝜑 → 𝜒 ) ▶ ( 𝜓 → 𝜃 ) ) |
| 10 | 9 | in3 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ↔ 𝜃 ) ▶ ( ( 𝜑 → 𝜒 ) → ( 𝜓 → 𝜃 ) ) ) |
| 11 | idn3 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ↔ 𝜃 ) , ( 𝜓 → 𝜃 ) ▶ ( 𝜓 → 𝜃 ) ) | |
| 12 | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
| 13 | 12 | imim1d | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜓 → 𝜃 ) → ( 𝜑 → 𝜃 ) ) ) |
| 14 | 2 11 13 | e13 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ↔ 𝜃 ) , ( 𝜓 → 𝜃 ) ▶ ( 𝜑 → 𝜃 ) ) |
| 15 | biimpr | ⊢ ( ( 𝜒 ↔ 𝜃 ) → ( 𝜃 → 𝜒 ) ) | |
| 16 | 15 | imim2d | ⊢ ( ( 𝜒 ↔ 𝜃 ) → ( ( 𝜑 → 𝜃 ) → ( 𝜑 → 𝜒 ) ) ) |
| 17 | 1 14 16 | e23 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ↔ 𝜃 ) , ( 𝜓 → 𝜃 ) ▶ ( 𝜑 → 𝜒 ) ) |
| 18 | 17 | in3 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ↔ 𝜃 ) ▶ ( ( 𝜓 → 𝜃 ) → ( 𝜑 → 𝜒 ) ) ) |
| 19 | impbi | ⊢ ( ( ( 𝜑 → 𝜒 ) → ( 𝜓 → 𝜃 ) ) → ( ( ( 𝜓 → 𝜃 ) → ( 𝜑 → 𝜒 ) ) → ( ( 𝜑 → 𝜒 ) ↔ ( 𝜓 → 𝜃 ) ) ) ) | |
| 20 | 10 18 19 | e22 | ⊢ ( ( 𝜑 ↔ 𝜓 ) , ( 𝜒 ↔ 𝜃 ) ▶ ( ( 𝜑 → 𝜒 ) ↔ ( 𝜓 → 𝜃 ) ) ) |
| 21 | 20 | in2 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ▶ ( ( 𝜒 ↔ 𝜃 ) → ( ( 𝜑 → 𝜒 ) ↔ ( 𝜓 → 𝜃 ) ) ) ) |
| 22 | 21 | in1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( ( 𝜒 ↔ 𝜃 ) → ( ( 𝜑 → 𝜒 ) ↔ ( 𝜓 → 𝜃 ) ) ) ) |