This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move a conditional inside and outside a function in maps-to notation. (Contributed by SN, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifmpt2v | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) = if ( 𝜑 , ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐵 , 𝐶 ) = 𝐵 ) | |
| 2 | 1 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 3 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) | |
| 4 | 2 3 | eqtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) = if ( 𝜑 , ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) |
| 5 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝐶 ) = 𝐶 ) | |
| 6 | 5 | mpteq2dv | ⊢ ( ¬ 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 7 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 8 | 6 7 | eqtr4d | ⊢ ( ¬ 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) = if ( 𝜑 , ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) |
| 9 | 4 8 | pm2.61i | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝜑 , 𝐵 , 𝐶 ) ) = if ( 𝜑 , ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |