This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication commutative law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvmulcom.1 | ⊢ 𝐴 ∈ ℂ | |
| hvmulcom.2 | ⊢ 𝐵 ∈ ℂ | ||
| hvmulcom.3 | ⊢ 𝐶 ∈ ℋ | ||
| Assertion | hvmulcomi | ⊢ ( 𝐴 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) = ( 𝐵 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcom.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | hvmulcom.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | hvmulcom.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | hvmulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) = ( 𝐵 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) | |
| 5 | 1 2 3 4 | mp3an | ⊢ ( 𝐴 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) = ( 𝐵 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) |