This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed form of nfex . Derived from hbexgVD . (Contributed by Alan Sare, 8-Feb-2014) (Revised by Mario Carneiro, 12-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hbexg | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa2 | ⊢ Ⅎ 𝑦 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | sp | ⊢ ( ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( 𝜑 → ∀ 𝑥 𝜑 ) ) | |
| 3 | 2 | alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 4 | nf5 | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) | |
| 5 | 3 4 | sylibr | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → Ⅎ 𝑥 𝜑 ) |
| 6 | 1 5 | nfexd | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → Ⅎ 𝑥 ∃ 𝑦 𝜑 ) |
| 7 | nf5 | ⊢ ( Ⅎ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) | |
| 8 | 6 7 | sylib | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |
| 9 | 1 8 | alrimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑦 ∀ 𝑥 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |
| 10 | alcom | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) | |
| 11 | 9 10 | sylib | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ∀ 𝑥 𝜑 ) → ∀ 𝑥 ∀ 𝑦 ( ∃ 𝑦 𝜑 → ∀ 𝑥 ∃ 𝑦 𝜑 ) ) |