This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If x is not free in ph , it is not free in A. y ph . (Contributed by NM, 12-Mar-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hbal.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| Assertion | hbal | ⊢ ( ∀ 𝑦 𝜑 → ∀ 𝑥 ∀ 𝑦 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbal.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑦 𝜑 → ∀ 𝑦 ∀ 𝑥 𝜑 ) |
| 3 | ax-11 | ⊢ ( ∀ 𝑦 ∀ 𝑥 𝜑 → ∀ 𝑥 ∀ 𝑦 𝜑 ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑦 𝜑 → ∀ 𝑥 ∀ 𝑦 𝜑 ) |