This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a length 4 word is a function if its symbols are different sets. (Contributed by AV, 10-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcnvs4 | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → Fun ◡ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | ⊢ 0 ∈ V | |
| 2 | 1ex | ⊢ 1 ∈ V | |
| 3 | 1 2 | pm3.2i | ⊢ ( 0 ∈ V ∧ 1 ∈ V ) |
| 4 | 2ex | ⊢ 2 ∈ V | |
| 5 | 3ex | ⊢ 3 ∈ V | |
| 6 | 4 5 | pm3.2i | ⊢ ( 2 ∈ V ∧ 3 ∈ V ) |
| 7 | 3 6 | pm3.2i | ⊢ ( ( 0 ∈ V ∧ 1 ∈ V ) ∧ ( 2 ∈ V ∧ 3 ∈ V ) ) |
| 8 | 7 | a1i | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 0 ∈ V ∧ 1 ∈ V ) ∧ ( 2 ∈ V ∧ 3 ∈ V ) ) ) |
| 9 | funcnvqp | ⊢ ( ( ( ( 0 ∈ V ∧ 1 ∈ V ) ∧ ( 2 ∈ V ∧ 3 ∈ V ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → Fun ◡ ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) ) | |
| 10 | 8 9 | sylan | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → Fun ◡ ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) ) |
| 11 | s4prop | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 = ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) ) | |
| 12 | 11 | adantr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 = ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) ) |
| 13 | 12 | cnveqd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ◡ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 = ◡ ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) ) |
| 14 | 13 | funeqd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → ( Fun ◡ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ↔ Fun ◡ ( { 〈 0 , 𝐴 〉 , 〈 1 , 𝐵 〉 } ∪ { 〈 2 , 𝐶 〉 , 〈 3 , 𝐷 〉 } ) ) ) |
| 15 | 10 14 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ∧ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) → Fun ◡ 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 ) |