This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucval.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | |
| fucval.b | ⊢ 𝐵 = ( 𝐶 Func 𝐷 ) | ||
| fucval.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | ||
| fucval.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| fucval.o | ⊢ · = ( comp ‘ 𝐷 ) | ||
| fucval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| fucval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| fuccofval.x | ⊢ ∙ = ( comp ‘ 𝑄 ) | ||
| Assertion | fuccofval | ⊢ ( 𝜑 → ∙ = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucval.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | |
| 2 | fucval.b | ⊢ 𝐵 = ( 𝐶 Func 𝐷 ) | |
| 3 | fucval.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 4 | fucval.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 5 | fucval.o | ⊢ · = ( comp ‘ 𝐷 ) | |
| 6 | fucval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 7 | fucval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 8 | fuccofval.x | ⊢ ∙ = ( comp ‘ 𝑄 ) | |
| 9 | eqidd | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) | |
| 10 | 1 2 3 4 5 6 7 9 | fucval | ⊢ ( 𝜑 → 𝑄 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝑁 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
| 11 | 10 | fveq2d | ⊢ ( 𝜑 → ( comp ‘ 𝑄 ) = ( comp ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝑁 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
| 12 | 2 | ovexi | ⊢ 𝐵 ∈ V |
| 13 | 12 12 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 14 | 13 12 | mpoex | ⊢ ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) ∈ V |
| 15 | catstr | ⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝑁 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } Struct 〈 1 , ; 1 5 〉 | |
| 16 | ccoid | ⊢ comp = Slot ( comp ‘ ndx ) | |
| 17 | snsstp3 | ⊢ { 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝑁 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } | |
| 18 | 15 16 17 | strfv | ⊢ ( ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) ∈ V → ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( comp ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝑁 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
| 19 | 14 18 | ax-mp | ⊢ ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) = ( comp ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝑁 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
| 20 | 11 8 19 | 3eqtr4g | ⊢ ( 𝜑 → ∙ = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , ℎ ∈ 𝐵 ↦ ⦋ ( 1st ‘ 𝑣 ) / 𝑓 ⦌ ⦋ ( 2nd ‘ 𝑣 ) / 𝑔 ⦌ ( 𝑏 ∈ ( 𝑔 𝑁 ℎ ) , 𝑎 ∈ ( 𝑓 𝑁 𝑔 ) ↦ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝑏 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑔 ) ‘ 𝑥 ) 〉 · ( ( 1st ‘ ℎ ) ‘ 𝑥 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) ) ) |