This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnmap | ⊢ ↑m Fn ( V × V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-map | ⊢ ↑m = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝑥 } ) | |
| 2 | mapex | ⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝑥 } ∈ V ) | |
| 3 | 2 | el2v | ⊢ { 𝑓 ∣ 𝑓 : 𝑦 ⟶ 𝑥 } ∈ V |
| 4 | 1 3 | fnmpoi | ⊢ ↑m Fn ( V × V ) |