This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for functions. (Contributed by FL, 14-Jul-2007) (Proof shortened by Andrew Salmon, 17-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | feq23 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : 𝐶 ⟶ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 | ⊢ ( 𝐴 = 𝐶 → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : 𝐶 ⟶ 𝐵 ) ) | |
| 2 | feq3 | ⊢ ( 𝐵 = 𝐷 → ( 𝐹 : 𝐶 ⟶ 𝐵 ↔ 𝐹 : 𝐶 ⟶ 𝐷 ) ) | |
| 3 | 1 2 | sylan9bb | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : 𝐶 ⟶ 𝐷 ) ) |