This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a positive integer power is zero, then its base is zero. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| expeq0d.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| expeq0d.3 | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) = 0 ) | ||
| Assertion | expeq0d | ⊢ ( 𝜑 → 𝐴 = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | expeq0d.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | expeq0d.3 | ⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) = 0 ) | |
| 4 | expeq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑁 ) = 0 ↔ 𝐴 = 0 ) ) | |
| 5 | 1 2 4 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 𝑁 ) = 0 ↔ 𝐴 = 0 ) ) |
| 6 | 3 5 | mpbid | ⊢ ( 𝜑 → 𝐴 = 0 ) |