This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence is equivalent to uniqueness implying existential uniqueness. (Contributed by NM, 5-Apr-2004) (Proof shortened by Wolf Lammen, 5-Dec-2018) (Proof shortened by BJ, 7-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exmoeu | ⊢ ( ∃ 𝑥 𝜑 ↔ ( ∃* 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmoeub | ⊢ ( ∃ 𝑥 𝜑 → ( ∃* 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) | |
| 2 | 1 | biimpd | ⊢ ( ∃ 𝑥 𝜑 → ( ∃* 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ) |
| 3 | nexmo | ⊢ ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) | |
| 4 | 3 | con1i | ⊢ ( ¬ ∃* 𝑥 𝜑 → ∃ 𝑥 𝜑 ) |
| 5 | euex | ⊢ ( ∃! 𝑥 𝜑 → ∃ 𝑥 𝜑 ) | |
| 6 | 4 5 | ja | ⊢ ( ( ∃* 𝑥 𝜑 → ∃! 𝑥 𝜑 ) → ∃ 𝑥 𝜑 ) |
| 7 | 2 6 | impbii | ⊢ ( ∃ 𝑥 𝜑 ↔ ( ∃* 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ) |