This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A more efficient proof of Theorem 5.8 of Clemente p. 20. For a longer line-by-line translation, see ex-natded5.8 . (Contributed by Mario Carneiro, 9-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ex-natded5.8.1 | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) → ¬ 𝜃 ) ) | |
| ex-natded5.8.2 | ⊢ ( 𝜑 → ( 𝜏 → 𝜃 ) ) | ||
| ex-natded5.8.3 | ⊢ ( 𝜑 → 𝜒 ) | ||
| ex-natded5.8.4 | ⊢ ( 𝜑 → 𝜏 ) | ||
| Assertion | ex-natded5.8-2 | ⊢ ( 𝜑 → ¬ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-natded5.8.1 | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) → ¬ 𝜃 ) ) | |
| 2 | ex-natded5.8.2 | ⊢ ( 𝜑 → ( 𝜏 → 𝜃 ) ) | |
| 3 | ex-natded5.8.3 | ⊢ ( 𝜑 → 𝜒 ) | |
| 4 | ex-natded5.8.4 | ⊢ ( 𝜑 → 𝜏 ) | |
| 5 | 4 2 | mpd | ⊢ ( 𝜑 → 𝜃 ) |
| 6 | 3 1 | mpan2d | ⊢ ( 𝜑 → ( 𝜓 → ¬ 𝜃 ) ) |
| 7 | 5 6 | mt2d | ⊢ ( 𝜑 → ¬ 𝜓 ) |