This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the evaluation functor. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlfval.e | ⊢ 𝐸 = ( 𝐶 evalF 𝐷 ) | |
| evlfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| evlfval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| evlfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| evlfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| evlfval.o | ⊢ · = ( comp ‘ 𝐷 ) | ||
| evlfval.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | ||
| Assertion | evlfval | ⊢ ( 𝜑 → 𝐸 = 〈 ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ 𝐵 ↦ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 𝑁 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 · ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlfval.e | ⊢ 𝐸 = ( 𝐶 evalF 𝐷 ) | |
| 2 | evlfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 3 | evlfval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | evlfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 5 | evlfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 6 | evlfval.o | ⊢ · = ( comp ‘ 𝐷 ) | |
| 7 | evlfval.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 8 | df-evlf | ⊢ evalF = ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ 〈 ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝑐 Func 𝑑 ) × ( Base ‘ 𝑐 ) ) , 𝑦 ∈ ( ( 𝑐 Func 𝑑 ) × ( Base ‘ 𝑐 ) ) ↦ ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 ( 𝑐 Nat 𝑑 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ( comp ‘ 𝑑 ) ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) 〉 ) | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → evalF = ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ 〈 ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝑐 Func 𝑑 ) × ( Base ‘ 𝑐 ) ) , 𝑦 ∈ ( ( 𝑐 Func 𝑑 ) × ( Base ‘ 𝑐 ) ) ↦ ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 ( 𝑐 Nat 𝑑 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ( comp ‘ 𝑑 ) ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) 〉 ) ) |
| 10 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → 𝑐 = 𝐶 ) | |
| 11 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → 𝑑 = 𝐷 ) | |
| 12 | 10 11 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( 𝑐 Func 𝑑 ) = ( 𝐶 Func 𝐷 ) ) |
| 13 | 10 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
| 14 | 13 4 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 15 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) | |
| 16 | 12 14 15 | mpoeq123dv | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ 𝐵 ↦ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) |
| 17 | 12 14 | xpeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( ( 𝑐 Func 𝑑 ) × ( Base ‘ 𝑐 ) ) = ( ( 𝐶 Func 𝐷 ) × 𝐵 ) ) |
| 18 | 10 11 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( 𝑐 Nat 𝑑 ) = ( 𝐶 Nat 𝐷 ) ) |
| 19 | 18 7 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( 𝑐 Nat 𝑑 ) = 𝑁 ) |
| 20 | 19 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( 𝑚 ( 𝑐 Nat 𝑑 ) 𝑛 ) = ( 𝑚 𝑁 𝑛 ) ) |
| 21 | 10 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) |
| 22 | 21 5 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( Hom ‘ 𝑐 ) = 𝐻 ) |
| 23 | 22 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) ( 2nd ‘ 𝑦 ) ) = ( ( 2nd ‘ 𝑥 ) 𝐻 ( 2nd ‘ 𝑦 ) ) ) |
| 24 | 11 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( comp ‘ 𝑑 ) = ( comp ‘ 𝐷 ) ) |
| 25 | 24 6 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( comp ‘ 𝑑 ) = · ) |
| 26 | 25 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ( comp ‘ 𝑑 ) ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) = ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 · ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ) |
| 27 | 26 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ( comp ‘ 𝑑 ) ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) = ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 · ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) |
| 28 | 20 23 27 | mpoeq123dv | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( 𝑎 ∈ ( 𝑚 ( 𝑐 Nat 𝑑 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ( comp ‘ 𝑑 ) ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) = ( 𝑎 ∈ ( 𝑚 𝑁 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 · ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) |
| 29 | 28 | csbeq2dv | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 ( 𝑐 Nat 𝑑 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ( comp ‘ 𝑑 ) ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) = ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 𝑁 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 · ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) |
| 30 | 29 | csbeq2dv | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 ( 𝑐 Nat 𝑑 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ( comp ‘ 𝑑 ) ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) = ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 𝑁 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 · ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) |
| 31 | 17 17 30 | mpoeq123dv | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → ( 𝑥 ∈ ( ( 𝑐 Func 𝑑 ) × ( Base ‘ 𝑐 ) ) , 𝑦 ∈ ( ( 𝑐 Func 𝑑 ) × ( Base ‘ 𝑐 ) ) ↦ ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 ( 𝑐 Nat 𝑑 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ( comp ‘ 𝑑 ) ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) = ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 𝑁 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 · ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) ) |
| 32 | 16 31 | opeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) ) → 〈 ( 𝑓 ∈ ( 𝑐 Func 𝑑 ) , 𝑥 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝑐 Func 𝑑 ) × ( Base ‘ 𝑐 ) ) , 𝑦 ∈ ( ( 𝑐 Func 𝑑 ) × ( Base ‘ 𝑐 ) ) ↦ ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 ( 𝑐 Nat 𝑑 ) 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) ( Hom ‘ 𝑐 ) ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 ( comp ‘ 𝑑 ) ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) 〉 = 〈 ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ 𝐵 ↦ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 𝑁 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 · ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) 〉 ) |
| 33 | opex | ⊢ 〈 ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ 𝐵 ↦ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 𝑁 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 · ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) 〉 ∈ V | |
| 34 | 33 | a1i | ⊢ ( 𝜑 → 〈 ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ 𝐵 ↦ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 𝑁 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 · ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) 〉 ∈ V ) |
| 35 | 9 32 2 3 34 | ovmpod | ⊢ ( 𝜑 → ( 𝐶 evalF 𝐷 ) = 〈 ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ 𝐵 ↦ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 𝑁 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 · ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) 〉 ) |
| 36 | 1 35 | eqtrid | ⊢ ( 𝜑 → 𝐸 = 〈 ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑥 ∈ 𝐵 ↦ ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) , ( 𝑥 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) , 𝑦 ∈ ( ( 𝐶 Func 𝐷 ) × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑥 ) / 𝑚 ⦌ ⦋ ( 1st ‘ 𝑦 ) / 𝑛 ⦌ ( 𝑎 ∈ ( 𝑚 𝑁 𝑛 ) , 𝑔 ∈ ( ( 2nd ‘ 𝑥 ) 𝐻 ( 2nd ‘ 𝑦 ) ) ↦ ( ( 𝑎 ‘ ( 2nd ‘ 𝑦 ) ) ( 〈 ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑥 ) ) , ( ( 1st ‘ 𝑚 ) ‘ ( 2nd ‘ 𝑦 ) ) 〉 · ( ( 1st ‘ 𝑛 ) ‘ ( 2nd ‘ 𝑦 ) ) ) ( ( ( 2nd ‘ 𝑥 ) ( 2nd ‘ 𝑚 ) ( 2nd ‘ 𝑦 ) ) ‘ 𝑔 ) ) ) ) 〉 ) |