This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for equivalence relation on domain quotient, inference version. (Contributed by Peter Mazsa, 25-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | erALTVeq1i.1 | ⊢ 𝑅 = 𝑆 | |
| Assertion | erALTVeq1i | ⊢ ( 𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erALTVeq1i.1 | ⊢ 𝑅 = 𝑆 | |
| 2 | erALTVeq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴 ) |