This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Converting a class constant definition by restriction (like df-ers or df-parts ) into a binary relation. (Contributed by Peter Mazsa, 1-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqres.1 | ⊢ 𝑅 = ( 𝑆 ↾ 𝐶 ) | |
| Assertion | eqres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 𝑆 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqres.1 | ⊢ 𝑅 = ( 𝑆 ↾ 𝐶 ) | |
| 2 | 1 | breqi | ⊢ ( 𝐴 𝑅 𝐵 ↔ 𝐴 ( 𝑆 ↾ 𝐶 ) 𝐵 ) |
| 3 | brres | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ( 𝑆 ↾ 𝐶 ) 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 𝑆 𝐵 ) ) ) | |
| 4 | 2 3 | bitrid | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐴 𝑆 𝐵 ) ) ) |