This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of the elements of an ordered pair. Exercise 3 of TakeutiZaring p. 15. (Contributed by NM, 15-Jul-1993) (Revised by Mario Carneiro, 26-Apr-2015) Remove an extraneous hypothesis. (Revised by BJ, 25-Dec-2020) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elop.1 | ⊢ 𝐵 ∈ V | |
| elop.2 | ⊢ 𝐶 ∈ V | ||
| Assertion | elop | ⊢ ( 𝐴 ∈ 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 = { 𝐵 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elop.1 | ⊢ 𝐵 ∈ V | |
| 2 | elop.2 | ⊢ 𝐶 ∈ V | |
| 3 | elopg | ⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 ∈ 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 = { 𝐵 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 ∈ 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 = { 𝐵 } ∨ 𝐴 = { 𝐵 , 𝐶 } ) ) |