This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ello12r | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑀 ) ) → 𝐹 ∈ ≤𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 ≤ 𝑥 ↔ 𝐶 ≤ 𝑥 ) ) | |
| 2 | 1 | imbi1d | ⊢ ( 𝑦 = 𝐶 → ( ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ↔ ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) ) |
| 3 | 2 | ralbidv | ⊢ ( 𝑦 = 𝐶 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) ) |
| 4 | breq2 | ⊢ ( 𝑚 = 𝑀 → ( ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ↔ ( 𝐹 ‘ 𝑥 ) ≤ 𝑀 ) ) | |
| 5 | 4 | imbi2d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ↔ ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑀 ) ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑀 ) ) ) |
| 7 | 3 6 | rspc2ev | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑀 ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑀 ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) |
| 9 | 8 | 3adant1 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑀 ) ) → ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) |
| 10 | ello12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) ) | |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑀 ) ) → ( 𝐹 ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑚 ) ) ) |
| 12 | 9 11 | mpbird | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐶 ≤ 𝑥 → ( 𝐹 ‘ 𝑥 ) ≤ 𝑀 ) ) → 𝐹 ∈ ≤𝑂(1) ) |