This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) Use df-br and shorten proof. (Revised by BJ, 16-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elimasn1.1 | ⊢ 𝐵 ∈ V | |
| elimasn1.2 | ⊢ 𝐶 ∈ V | ||
| Assertion | elimasn1 | ⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasn1.1 | ⊢ 𝐵 ∈ V | |
| 2 | elimasn1.2 | ⊢ 𝐶 ∈ V | |
| 3 | elimasng1 | ⊢ ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐶 ∈ ( 𝐴 “ { 𝐵 } ) ↔ 𝐵 𝐴 𝐶 ) |