This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of a complex number is nonzero, deduction form. (Contributed by NM, 13-Jan-2006) (Revised by Mario Carneiro, 29-Apr-2014) (Revised by SN, 25-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efne0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| Assertion | efne0d | ⊢ ( 𝜑 → ( exp ‘ 𝐴 ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efne0d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 3 | oveq1 | ⊢ ( ( exp ‘ 𝐴 ) = 0 → ( ( exp ‘ 𝐴 ) · ( exp ‘ - 𝐴 ) ) = ( 0 · ( exp ‘ - 𝐴 ) ) ) | |
| 4 | efcan | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) · ( exp ‘ - 𝐴 ) ) = 1 ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → ( ( exp ‘ 𝐴 ) · ( exp ‘ - 𝐴 ) ) = 1 ) |
| 6 | 1 | negcld | ⊢ ( 𝜑 → - 𝐴 ∈ ℂ ) |
| 7 | 6 | efcld | ⊢ ( 𝜑 → ( exp ‘ - 𝐴 ) ∈ ℂ ) |
| 8 | 7 | mul02d | ⊢ ( 𝜑 → ( 0 · ( exp ‘ - 𝐴 ) ) = 0 ) |
| 9 | 5 8 | eqeq12d | ⊢ ( 𝜑 → ( ( ( exp ‘ 𝐴 ) · ( exp ‘ - 𝐴 ) ) = ( 0 · ( exp ‘ - 𝐴 ) ) ↔ 1 = 0 ) ) |
| 10 | 3 9 | imbitrid | ⊢ ( 𝜑 → ( ( exp ‘ 𝐴 ) = 0 → 1 = 0 ) ) |
| 11 | 10 | necon3d | ⊢ ( 𝜑 → ( 1 ≠ 0 → ( exp ‘ 𝐴 ) ≠ 0 ) ) |
| 12 | 2 11 | mpi | ⊢ ( 𝜑 → ( exp ‘ 𝐴 ) ≠ 0 ) |