This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eelTT.1 | ⊢ ( ⊤ → 𝜑 ) | |
| eelTT.2 | ⊢ ( ⊤ → 𝜓 ) | ||
| eelTT.3 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | ||
| Assertion | eelTT | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eelTT.1 | ⊢ ( ⊤ → 𝜑 ) | |
| 2 | eelTT.2 | ⊢ ( ⊤ → 𝜓 ) | |
| 3 | eelTT.3 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
| 4 | truan | ⊢ ( ( ⊤ ∧ 𝜓 ) ↔ 𝜓 ) | |
| 5 | 1 3 | sylan | ⊢ ( ( ⊤ ∧ 𝜓 ) → 𝜒 ) |
| 6 | 4 5 | sylbir | ⊢ ( 𝜓 → 𝜒 ) |
| 7 | 2 6 | syl | ⊢ ( ⊤ → 𝜒 ) |
| 8 | 7 | mptru | ⊢ 𝜒 |